nrw.social ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Wir sind eine freundliche Mastodon Instanz aus Nordrhein-Westfalen. Ob NRW'ler oder NRW-Sympathifanten, jeder ist hier willkommen.

Serverstatistik:

2,8 Tsd.
aktive Profile

#sentinel

3 Beiträge2 Beteiligte0 Beiträge heute
Antwortete im Thread
Yes. I fresh installed Sentinel from the github repo, I started, connected to my dojo successfully and then imported manually my wallets via #Ashigaru QR export watch only method.

Then I exit the app and the next few times all shows up correctly, but then suddenly the next time after a successful PIN unlock the Sentinel is empty, not a single collection is shown.

I have tested with and without pin, with other Dojo's, nothing.

Do you use #Sentinel in @GrapheneOS ??

I have heard that only happens to GrapheneOS users...

🛰️ La veille du séisme en Birmanie, le satellite #Sentinel-1A avait pris une image radar de la région. Quelques jours plus tard, Sentinel-1C en a repris une. Les 2 images combinées forment un interférogramme de la faille de Sagaing.
On voit les mouvements du sol (voir ALT)

Plus d'informations : esa.int/Applications/Observing

#Drought, Lake #Constance and #Sentinel-2: Switzerland has experienced an exceptionally dry period, with Lake Constance’s water levels dropping to their lowest in decades due to little rainfall and snowmelt from the Alps. Recent Sentinel-2 #earthobservation / #remotesensing data and gauging station records reveal...
spatialists.ch/posts/2025/04-0 #GIS #GISchat #geospatial #SwissGIS

spatialists.ch – geospatial newsDrought, Lake Constance and Sentinel-2 – spatialists.ch – geospatial news
Mehr von Spatialists

Glacial Lake Mapping Using Remote Sensing Geo-Foundation Model
--
doi.org/10.1016/j.jag.2025.104 <-- shared paper
--
HIGHLIGHTS:
• Proposed U-ViT model based on Prithvi GFM for multi-sensor glacial lake mapping.
• Achieved an F1 score of 0.894 on Sentinel-1&2, surpassing CNNs scoring below 0.8.
• Maintains strong performance with 50% less training data, proving efficiency.
• Excels in detecting small lakes (<0.01km²) and handling clouds and complex terrains..."
#GIS #spatial #mapping #glaciallake #GeospatialFoundationModel #satellite #Sentinel #GaoFen #remotesensing #earthobservation #model #modeling #climatechange #glacial #glacier #melt #melting #UViT #deepleanring #AI #framework #performance #metrics #opensource